As a new graduate student embarking on a master’s degree at the in 2018, Meg Slattery was struck by how centrally batteries – particularly the rechargeable lithium-ion batteries in electric cars – figured into California’s decarbonization strategy.
But to put tens of millions of electric cars on American roads, battery manufacturers will need more lithium. That’s a challenge for the United States, which has just one active lithium mine in Nevada. U.S. lithium production supplies less than 2% of the world’s lithium supply, with most of the lithium produced by South America and Australia. Critics say that mining lithium from hard rock harms the environment, disturbs sacred tribal lands, and damages fragile ecosystems.
Solution in the Salton Sea?
Researchers believe one solution may lie in the Salton Sea geothermal field. This volcanic area in Southern California’s Imperial Valley sits atop enough lithium to supply all of America’s domestic battery needs, plus extra for export.

Companies already generate energy using steam from hot geothermal brine – a concentrated saline fluid that flows naturally in the earth thousands of feet below the Salton Sea. The brine becomes naturally enriched with lithium and other minerals as it circulates through hot rocks underground. Researchers want to recover lithium from the Salton Sea’s geothermal brine before it’s returned underground at the end of clean-energy production.
Proponents say that recovering lithium from geothermal brine offers a far more sustainable alternative to hard rock mining or evaporation, but just how sustainable and renewable the Salton Sea’s lithium supply actually is remains uncertain. So for the past few years, researchers from Berkeley Lab’s (LIRRIC) and have been working to measure the Salton Sea’s lithium resource capacity, evaluate the potential environmental impact of commercial-scale lithium extraction, and link California’s lithium future to the nation’s battery supply-chain strategy.
Slattery is now a Ph.D. candidate at Âé¶¹´«Ã½, and was recently named the by the National Center for Sustainable Transportation. She is working with LIRRIC Director Mike Whittaker, a research scientist in the Earth and Environmental Sciences Area (EESA) at Berkeley Lab, to develop a new research blueprint as they explore the Salton Sea’s potential. It’s inspired by a concept called procedural justice that could give voice to Imperial Valley communities through scientific literature.
She shares her perspective in this Q&A.

Q: What is procedural justice, and why is it important for lithium extraction research?
Meg Slattery: Procedural justice comes from the concept of trivalent environmental justice, which has three aspects: distributive justice, procedural justice, and recognition justice. My understanding of it is based on scholarship led by social and political theorists like Nancy Fraser, Iris Young, and David Schlosberg.
Distributive justice examines how environmental burdens and benefits are distributed. To examine distributive justice, you look at which communities are experiencing pollution and negative impacts because of a technology or energy development, and who is benefiting from it, economically or environmentally. For example, in the case of electric vehicles, people who live in areas with widespread EV adoption will experience improved air quality.
Procedural justice looks at the decision-making process when a development happens or is proposed, and who is getting to participate; who is deciding where a power plant is located; or who is deciding where the revenue from that is invested. Procedural (in)justice helps explain why distributive justice is unequal, and vice versa, because communities that don’t have as many resources as others can’t show up and advocate for themselves. For example, it might be harder for them to get time off work to attend community meetings or learn about what’s going on in their community.

Informed consent, or the ability to say yes or no to a new development in your area, is a really key aspect of procedural justice. For that to be possible, decision-making processes need to be accessible to everyone, but so does information. And right now, the way informative materials are written and shared might not be accessible to everyone, or scientists may be overlooking the issues that are most important to communities altogether.
I think we can make these decision-making processes more equitable